08 September 2020

Sistem Makroskopik dan Sistem Mikroskopik


Assalamu Alaikum Warahmatullahi Wabarakatuh

    Selamat datang di website mafiaisrul.blogspot.com kali ini kita akan membahas sedikit tentang Sistem Makroskopik dan Sistem Mikroskopik. Nah berikut penjelasan singkatnya…

SISTEM MAKROSKOPIK DAN SISTEM MIKROSKOPIK
A. Latar Belakang
Pada umumnya terdapat dua pandangan yang bisa diambil untuk menyelidiki karakteristik sistem dan interaksinya dengan lingkungan, yaitu pandangan makroskopik dan pandangan mikroskopik.
Misalnya kita mempunyai silinder mesin mobil yang diisi campuran hidrokarbon dan udara. Setelah campuran tersebut dibakar menghasilkan gas-gas yang diperikan dengan senyawa kimia tertentu. Pernyataan mengenai jumlah zat ini merupakan pemerian komposisi sistem itu. Setiap saat sistem yang diperikan dengan komposisi tersebut akan menempati volume yang ditentukan oleh kedudukan piston. Kuantitas lain yang dapat digunakan untuk memerikan sistem tersebut adalah tekanan dan temperatur. Jadi dengan demikian untuk memerikan sistem campuran hidrokarbon dalam silinder piston dengan empat kuantitas: komposisi, volume, tekanan dan temperatur. Kuantitas ini diacu sebagai ciri umum dari sistem dan merupakan pemerian makroskopik.
Sistem di atas dapat pula diperikan berdasarkan pandangan mikroskopik. Menurut mekanika statistik, sistem diandaikan terdiri atas sejumlah besar N molekul, masing-masing dapat ada dalam keadaan yang energinya E. Molekul ini dianggap saling berinteraksi melalui tumbukan atau melalui gaya yang ditimbulkan oleh medan. Konsep peluang diterapkan, dan keadaan setimbang sistem dianggap sebagai keadaan dengan peluang terbesar. Lebih lanjut bagaimana pemerian secara mikroskopik sistem tersebut akan dipelajari dalam mekanika statistik.

B. Keadaan Makro dan Mikro
Keadaan termodinamika digambarkan sebagai titik dalam ruang keadaan. Setiap titik dalam diagram fase sistem PVT bersesuaian dengan sebuah keadaan, yaitu keadaan termodinamik. Keadaan termodinamik adalah keadaan makro (macrostate). Setiap keadaan makro bersesuaian dengan banyak sekali keadaan mikro, bahkan tak-hingga untuk sistem kontinu. Keadaan mikro adalah konfigurasi sesaat dari semua elemen mikroskopik. Keadaan-keadaan mikroskopik suatu sistem dapat dinyatakan dalam ruang fase. Ruang fase dari suatu gas dalam wadah tertutup yang terdiri atas N molekul dapat digambarkan dalam ruang fase berdimensi 6N, yaitu {x1···pz N}

C. Pandangan Mikroskopik
Pemerian mikroskopik suatu sistem meliputi beberapa ciri khas seperti adanya pengandaian bahwa sistem terdiri atas sejumlah molekul, dan kuantitas-kuantitas yang diperinci tidak dapat diukur. Contoh penerapan pandangan mikroskopik untuk cabang ilmu fisika yaitu dalam fisika statistik.. Ruang lingkup fisika statistik meliputi dua bagian besar, yaitu teori kinetik dan mekanika statistik. Berdasarkan pada teori peluang dan hukum mekanika, teori kinetik mampu menggambarkan sistem dalam keadaan tak seimbang, seperti: proses efusi, viskositas, konduktivitas termal, dan difusi. Disini, molekul suatu gas ideal tidak dianggap bebas sempurna tetapi ada interaksi ketika bertumbukan dengan molekul lain atau dengan dinding. Bentuk interaksi yang terbatas ini diacukan sebagai interaksi lemah atau kuasi bebas. Ruang lingkup ini tidak membahas partikel berantaraksi kuat
Uraian suatu sistem yang sebagai koordinat makroskopik, dapat diambil contoh sebagai berikut:
·         Kecepatan masing-masing partikel
·         Energi kinetik masing-masing partikel
·         Kecepatan partikel
Dalam fisika, kinematika adalah cabang dari mekanika klasik yang membahas gerak benda dan sistem benda tanpa mempersoalkan gaya penyebab gerakan. Kata kinematika dicetuskan oleh fisikawan Perancis A.M. Ampère.

            Kinematika partikel adalah studi yang mempelajari karakteristik gerak suatu partikel. Kecepatan sebuah partikel adalah vektor yang menunjukkan arah dan besar dari perubahan posisi vektor, bagaimana posisi sebuah benda berpindah tiap waktu. Anggap rasio perbedaan 2 posisi partikel dibagi dalam interval waktu sama,
Ciri Khas Koordinat Mikroskopik
1.      Terdapat pengandaian secara struktur materi, yaitu molekul dianggap ada.
2.      Banyak kuantitas yang harus diperinci
3.      Kuantitas yang diperinci tidak berdasarkan penerimaan indera kita
4.      Kuantitas ini tidak bisa diukur

Kedua pandangan di atas terdapat hubungan, walaupun sepintas kelihatan sangat berbeda.
Contoh :
Kuantitas mikroskopik tekanan adalah perubahan momentum rata-rata yang ditimbulkan oleh tumbukan molekular pada bidang yang luasnya satu satuan. Tekanan dirasakan oleh indera kita, dialami, diukur, dan dipakai lama sebelum fisikawan mempunyai alasan untuk percaya adanya dampak molekular. Jika teori molekular diubah konsep tekanan tetap bertahan dan akan tetap berarti sama untuk setiap orang yang normal (teori).

D. Pandangan Makroskopik
Dalam termodinamika sistem akan dideskripsikan dengan sejumlah besaran fisis yang menggambarkan keadaan sistem (disebut sebagai besaran keadaan). Keadaan sistem yang ditinjau dalam termodinamika adalah keadaan makroskopik yang dapat berupa keadaan rerata dari partikel-partikel dalam sistem atau berupa keadaan kesuluruhan (total) partikel-partikel dalam sistem. Contoh keadaan makroskopik tersebut adalah :
·         Tekanan P
·         Temperatur T
·         Volume V
·         Energi dalam U

Tekanan P
Tekanan merupakan salah satu property yang terpenting dalam thermodinamika, dan didefinisikan sebagai gaya tekan suatu fluida (cair atau gas) pada satu satuan unit luas area. Istilah tekanan pada benda padat disebut tegangan (stress). Satuan tekanan adalah Pa (Pascal), yang didefinisikan sebagai, 1 Pa = 1 N/m2 Karena satuan Pascal terlalu kecil, maka dalam analisis thermodinamika
seringdigunakan satua kilopascal (1 kPa = 103 Pa), atau megapascal (1 MPa = 106 Pa). Satuan tekanan yang cukup dikenal adalah satuan bar (barometric), atau atm (standard atmosphere), sebagai berikut.
1 bar = 105 Pa = 0,1 Mpa = 100kPa
1 atm = 101. 325 Pa = 101,325 kPa = 1, 01325 bar
Pengukuran tekanan dengan menggunakan referensi tekanan nol absolut disebut tekanan absolut (ata), sedang tekanan manometer (ato) adalah tekanan relatif terhadap tekanan atmosfir. Tekanan vakum adalah tekanan dibawah 1 atm, yaitu perbedaan antara tekanan atmosfir dengan tekanan absolut.
Alat pengukur tekanan diatas atmosfir adalah manometer, alat pengukur tekanan vakum disebut manometer vakum, sedang alat pengukur tekanan atmosfir disebut barometer. Terdapat banyak jenis metode pengukuran tekanan seperti pipa U, manometer pegas, atau transduser elektronik

Temperatur T

Ukuran temperatur berfungsi untuk mengindikasikan adanya energi panas pada suatu benda padat, cair, atau gas. Metodenya biasanya menggunakan perubahan salah satu property suatu material karena panas, seperti pemuaian, dan sifat listrik. Prinsip pengukurannya adalah apabila suatu alat ukur ditempelkan pada benda yang akan diukur temperaturnya, maka akan terjadi perpindahan panas ke alat ukur sampai terjadi keadaan seimbang. Dengan demikian temperatur yang terterapada alat ukur adalah sama dengan temperatur pada benda yang diukur temperaturnya. Prinsip tersebut menghasilkan Hukum Thermodinamika Zeroth (Zeroth Law of Thermodynamics), yaitu apabila dua benda dalam keadaan seimbang thermal dengan benda ketiga maka dua benda tersebut juga dalam keadaan seimbang thermal walaupuntidak saling bersentuhan.
Dalam sistem SI satuan temperatur adalah Kelvin (K) tanpa derajad. Skala dari ukuran temperatur dalam derajad Celcius adalah sama dengan skala ukuran Kelvin, tetapi titik nol oC sama dengan 273,15 K. Titik nol oC adalah kondisi es mencair pada keadaan standard atmosfir, sedang kondisi 0 K adalah kondisi nol mutlak dimana semua gerakan yang menghasilkan energi pada semua materi berhenti. Dalam analisis thermodinamika, apabila yang dimaksudkan adalah ukuran temperatur maka yang digunakan adalah ukuran dalam K, sedang apabila analisis berhubungan dengan perbedaan temperatur maka baik ukuran oC maupun K dapat digunakan.

Volume V
volume dari sebuah sistem termodinamika adalah suatu parameter ekstensif untuk menjelaskan keadaan termodinamika. Volume spesifik, adalah properti intensif, adalah volume per satuan massa. Volume merupakan fungsi keadaan dan interdependen dengan properti termodinamika lainnya seperti tekanan dan suhu. Contohnya, volume berhubungan tekanan dan suhu gas ideal melalui hukum gas ideal. Volume fisik dari sebuah sistem dapat sama atau berbeda dari volume kontrol yang digunakan untuk menganalisis sistem.

Energi Dalam U
Energi dalam (E) adalah total energi kinetik dan energi potensial yang ada di dalam sistem. Namun karena besar energi kinetik dan energi potensial pada sebuah sistem tidak dapat diukur, maka besar energi dalam sebuah sistem juga tidak dapat ditentukan, yang dapat ditentukan adalah besar perubahan energi dalam suatu sistem. Perubahan energi dalam dapat diketahui dengan mengukur kalor (q) dan kerja (w), yang akan timbul bila suatu sistem bereaksi. Oleh karena itu, perubahan energi dalam dirumuskan dengan persamaan E = q + w.
Jika sistem menyerap kalor, maka q bernilai positif. Jika sistem mengeluarkan kalor, maka q bernilai negatif. Jika sistem melakukan kerja, maka w pada rumus tersebut bernilai positif. Jika sistem dikenai kerja oleh lingungan, maka w bernilai negatif.Jadi bila suatu sistem menyerap kalor dari lingkungan sebesar 10 kJ, dan sistem tersebut juga melakukan kerja sebesar 6 kJ, maka perubahan energi dalam-nya akan sebesar 16 kJ.

Besaran-besaran makroskopik tadi dikelompokkan menjadi dua jenis, yang sebanding dengan jumlah partikel dan yang tidak bergantung pada jumlah partikel. Besaran yang sebanding dengan jumlah partikel disebut sebagai besaran ekstensif, misalnya jumlah partikel, volume, energi dalam, dan entropi S. Sedangkan besaran yang tidak bergantung pada jumlah partikel disebut sebagai besaran intensif, misalnya tekanan, temperatur, panas jenis c, kerapatan ρ dan potensial kimia µ.
Ciri Khas Koordinat Makroskopik
1.  Koordinat ini tidak menyangkut pengandaian khusus mengenai struktur materi.
2.  Jumlah koordinatnya sedikit
3.  Koordinat ini dipilih melalui daya terima indera kita scara langsung.
4.  Pada umumnya koordinat ini dapat diukur secara langsung

E. Fluktuasi Kesetimbangan
Proses kesetimbangan sangat penting dalam pengukuran, karena pengukuran suatu variabel dilakukan ketika sistem berada dalam kesetimbangan. Bayangkan ketika anda mengukur berat benda dengan menggunakan neraca Ohauss, kapan pengukuran dilakukan? Yang anda lakukan adalah melihat jarum penunjuk berada pada posisi setimbang dengan kedudukan yang telah ditentukan. Ketika anda mengukur harga arus maka hal yang anda lakukan adalah melihat posisi jarum petunjuk pada angka yang tertera, setelah kira-kira jarum jam pada posisi yang seimbang dengan angka yang tertera pada amperemeter maka anda dapat melakukan pengukuran harga arus.
Dari kedua contoh di atas maka keadaan setimbang merupakan keadaan yang sangat penting pada proses pengukuran. Dalam fisika statistik untuk menyatakan keadaan setimbang dinyatakan dengan peluang maksimal, pernyataan peluang maksimal dapat dinyatakan oleh berbagai cara, diantaranya:
Jumlah keadaan yang terbesar dari semua jumlah keadaan yang ada (Pmax).
Jumlah keadaan yang diizinkan (Wmax).
Jumlah keadaan makro yang memiliki jumlah keadaan mikro terbesar (Wmax). Ketiganya memiliki arti yang sama, namun digunakan pada kondisi yang berbeda. Sebagai contoh, keadaan setimbang adalah keadaan yang memiliki peluang terbesar dari semua jumlah keadaan yang ada.

Contoh:
Dua buah partikel identik berada dalam sistem yang terisolasi (sistem I). Sistem I ini terdiri dari dua sistem (sistem A dan A’) yang dibatasi oleh dinding, dimana memungkinkan perpindahan partikel antar kedua sistem tersebut. Cara kita untuk meramalkan kesetimbangan adalah meramalkan jumlah keadaan yang dapat terjadi. Dari keadaan yang ditunjukkan pada Gb.2.1, maka kita dapat menyatakan bahwa kesetimbangan terjadi ketika masing-masing sistem diisi oleh sebuah partikel, dimana memiliki peluang terbesar (P(2) = P(3) = ½), mengingat dalam hal ini kedua partikel dianggap sama. Biasanya ketika kita melalukan pengukuran, yang kita lakukan adalah membandingkan dengan standar, maka dalam hal ini hanya ada dua sistem, yaitu sistem yang akan kita ukur dengan sistem yang sudah memiliki standar.

F. Sistem Makroskopik dan Sistem Mikroskopik
Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil (ukurannya sangat kecil + ukuran Angstrom, tidak dapat diukur secara langsung) sebagai contoh sistem partikel tunggal. Penjelasan sistem partikel tunggal ini dapat dilakukan melalui hukum-hukum mekanika klasik maupun kuantum dan untuk jumlah yang cukup banyak dapat dibantu dengan menggunakan numerik (komputer).
Sistem makroskopik merupakan sistem dengan skala besar (dapat diukur), sistem ini dilengkapi dengan variabel makroskopik yaitu variabel yang dapat diukur (tekanan, temperatur, volume, energi, …). Fisika statistik mencoba untuk menjembatani bagaimana keadaan mikroskopik mampu menjelaskan keadaan makroskopik.
Sebagai contoh, ketika kita mengamati sistem N partikel dalam keadaan wujud gas yang suatu saat secara tiba-tiba sistem terkondensasi sehingga sistem berada dalam keadaan fase cair. Jika kita melihat tinjauan mikroskopik, maka kita akan melihat partikel penyusun sistem pada fase gas akan berubah menjadi partikel penyusun sistem pada fase cair. Perubahan ini dapat diumpamakan sebagai proses reproduksi pertumbuhan partikel penyusun sistem pada fase cair. Mampukah fisika (mekanika, termodinamika, listrik-magnet, gelombang, …) menjelaskan keadaan ini?. Untuk itu perlu dikembangkan konsep baru agar dapat menjelaskan keadaan tersebut.
Sebagai contoh, ketika kita mengamati sistem N partikel dalam keadaan wujud gas yang suatu saat secara tiba-tiba sistem terkondensasi sehingga sistem berada dalam keadaan fase cair. Jika kita melihat tinjauan mikroskopik, maka kita akan melihat partikel penyusun sistem pada fase gas akan berubah menjadi partikel penyusun sistem pada fase cair. Perubahan ini dapat diumpamakan sebagai proses reproduksi pertumbuhan partikel penyusun sistem pada fase cair. Mampukah fisika (mekanika, termodinamika, listrik-magnet, gelombang, …) menjelaskan keadaan ini?. Untuk itu perlu dikembangkan konsep baru agar dapat menjelaskan keadaan tersebut.
Fisika statistik mencoba untuk menjelaskan keadaan tersebut, melalui penggunaaan konsep-konsep dasar fisika (mekanika, termodinamika, listrik- magnet, gelombang, …), perilaku sistem mikroskopik dibangun beserta syarat batas fisisnya. Untuk melakukan estimasi makroskopik berdasarkan fluktuasi perilaku sistem mikroskopik tersebut kita perlu menggunakan konsep-konsep probabilitas yang bersesuaian dengan sistem yang kita bangun. Sehingga dalam perkuliahan fisika statistik pemahaman konsep dasar fisika sangat diperlukan. Berbicara tentang sistem makroskopik, berarti kita membicarakan tentang variabel makroskopik yang menjadi ciri dari sistem tersebut. Variabel makroskopik menjelaskan karakter fisis sistem yang informasinya didapat melalui hasil pengukuran. Pengukuran terjadi ketika sistem berada dalam setimbang dan hal ini berkaitan dengan jumlah kejadian mikro dengan peluang terbesar

Sekian artikel hari ini semoga bermanfaat, dan mohon maaf bila terdapat kesalahan dalam penulisan artikel kami. Jangan lupa follow and share ke teman-teman kalian ya,,, terima kasih.

Salam hangat

penulis


No comments: